and so $(x \cdot y)' = e_1 x_{12} u_{23} (y_{12} u_{13} + u_{13} y_{12}) u_{12}$. Now (4), (5) and (6) imply that

$$y_{12}u_{13}u_{12} = y_{12}u_{13}(e_1 + e_3)u_{12} = (\bar{y}_{23} - u_{13}y_{12})e_1u_{12} = -u_{13}y_{12}e_1u_{12} = -u_{13}(e_1 + e_3)y_{12}e_1y_{12} = -u_{13}e_1y_{12}e_1u_{12} = 0.$$

Also $u_{23}u_{13}y_{12} = u_{23}u_{13}(e_1 + e_2)y_{12} = u_{23}u_{13}e_1y_{12} = (u_{12} - u_{13}u_{23})e_1y_{12} = u_{12}e_1y_{12}$. But then $(x \cdot y)' = e_1x_{12}u_{12}e_1y_{12}u_{12} = x'y'$.

We have proved that the mapping $x \to x'$ is a homomorphism of $\mathfrak C$ onto the subalgebra $\mathfrak C'$ of $\mathfrak A$ consisting of all x'. The kernel $\mathfrak F$ of this homomorphism is not $\mathfrak C$ since otherwise every x'=0 whereas $u'=e_1u_{12}^2=e_1(e_1+e_2)=e_1\neq 0$. Since $\mathfrak C$ is simple $\mathfrak F=0$, the homomorphism is an isomorphism. This is impossible since $\mathfrak C$ is not associative and $\mathfrak C'$ is associative.

ON THE SINGULAR VALUES OF A PRODUCT OF COMPLETELY CONTINUOUS OPERATORS

By Alfred Horn

University of California, Los Angeles

Communicated by G. C. Evans, May 16, 1950

In this note I wish to present a theorem on the singular values of a product of completely continuous operators in Hilbert space. As an application, a simple proof of a recent result of S. H. Chang will be given. The singular values of an operator K are the positive square roots of the eigen-values of K^*K , where K^* is the adjoint of K.

We begin with a slight generalization of a theorem of Weyl.¹

THEOREM 1. If H is a positive, symmetric, completely continuous operator whose first n eigen-values² are $\lambda_1, \ldots, \lambda_n$, then

$$det [(Hy_i, y_j)] \leq \lambda_1 \cdot \ldots \cdot \lambda_n det [(y_i, y_j)]$$

for any elements y_1, \ldots, y_n .

Here, det $[a_{ij}]$ denotes the determinant of the *n*th order matrix with elements a_{ij} . Weyl's elegant proof uses an appeal to the theory of *n*-tensors. A straightforward proof may be given by using the relation $(Hy_i, y_j) = \sum_k \lambda_k(y_i, x_k)(x_k, y_j)$, where the x_k form a *complete* ortho-normal set.

¹ See the author's "On a Certain Algebra of Quantum Mechanics," Ann. Math., 35, 65-73 (1934).

² For these properties see Section 18 of the author's "A Structure Theory for Jordan Algebras," *Ibid.*, 48, 546-567 (1947).

THEOREM 2. If K is a completely continuous operator with singular values α_i , then det $[(Ky_i, Ky_j)] \leq \alpha_1^2 \ldots \alpha_n^2$ det $[(y_i, y_j)]$.

This follows immediately from Theorem 1 if we set $H = K^*K$.

THEOREM 3. Let A and B be completely continuous operators and let the singular values of A, B and AB be denoted by α_i , β_i , γ_i , respectively. If f is any function such that $f(e^x)$ is convex and increasing as a function of x, then for each n we have $\sum_{i=1}^{n} f(\gamma_i) \leq \sum_{i=1}^{n} f(\alpha_i \beta_i)$.

Proof: Let y_1, \ldots, y_n form an ortho-normal set with $(AB)*ABy_i = \gamma_i y_i$. By Theorem 2, $\gamma_1^2 \cdot \ldots \cdot \gamma_n^2 = \det [(ABy_i, ABy_i)] \leq \alpha_1^2 \cdot \ldots \cdot \alpha_n^2 \det [(By_i, By_j)] \leq \alpha_1^2 \cdot \ldots \cdot \alpha_n^2 \beta_1^2 \cdot \ldots \cdot \beta_n^2$. The result now follows by an application of a theorem of Polya.³

The next theorem was proved by Chang⁴ using methods of function theory.

THEOREM 4. Suppose $K = K_1 \cdot \ldots \cdot K_m$, where each K_i is an operator of finite norm (integral operator with L_2 kernel), and let γ_i be the singular values of K. Then $\sum_i \gamma_i^{2/m}$ converges.

Proof: The proof is by induction on m. The case m=1 is an immediate consequence of the definition of an operator of finite norm. Suppose the theorem holds when K is a product of fewer than m operators. Let α_i be the singular values of K_1 , and let β_i be the singular values of $K_2 \cdot \ldots \cdot K_m$. Using Theorem 3 and Holder's inequality, we have

$$\sum_{i} \gamma_{i}^{2/m} \leq \sum_{i} \alpha_{i}^{2/m} \beta_{i}^{2/m} \leq \left(\sum_{i} \alpha_{i}^{2}\right)^{1/m} \left(\sum_{i} \beta_{i}^{2/m-1}\right)^{m-1/m}$$

In conclusion we remark that by a theorem of Chang,⁴ the convergence of $\sum_i \gamma_i^{2/m}$ implies the convergence of $\sum_i |\lambda_i|^{2/m}$, where λ_i are the eigenvalues of K.

- ¹ Weyl, H., "Inequalities Between the Two Kinds of Eigenvalues of a Linear Transformation," these Proceedings, **35**, 408-411 (1949).
- ² The eigen-values and singular values will always be arranged in order of decreasing absolute value, with repetitions according to multiplicity.
- ³ Polya, G., "Remark on Weyl's Note: Inequalities Between the Two Kinds of Eigenvalues of a Linear Transformation," these PROCEEDINGS, 36, 49-51 (1950).
- ⁴ Chang, S. H., "On the Distribution of the Characteristic Values and Singular Values of Linear Integral Equations," Trans. Am. Math. Soc., 67, 351-368 (1949).